Engineering Mathematics and
Physics Department
Algebra and Analytical Geometry
Course Code: Math 102
Final Exam
Time Allowed: 2 hours

Answer Five questions only **Question 1**

(a) Find the vertex, focus, and sketch the parabola $x^2 - 4x - 12y + 28 = 0$.

(b) Find the center, vertices and foci of the curve (and sketch) $16x^2 + 9y^2 - 72y = 0$.

Question 2

(a)Separate the lines and find the angle between them $x^2 + xy - 2y^2 + 6y - 4 = 0$.

(b)Write the equation of the plane which passes through the points (0, -1, 3), (2, 1, 2) and (1, -2, 4).

Ouestion 3

(a)Complete the statement: The hyperbola is the locus of moving point such that....

- (b)Determine the centre and radius of the circle $x^2 + y^2 2x + 4y + 1 = 0$. Also, write it in parametric form.
- (c)Describe each of the following surfaces: (i) $z^2 x^2 + y^2 = 0$

(ii)
$$x^{2} + y^{2} + z^{2} - 2x + 4y - 8z = 0$$
 (iii) $x^{2} + y^{2} + 3z = 0$
estion 4

Question 4

- (a) If $\alpha_1, \alpha_2, \alpha_3$ are the roots of the equation: $3x^3 x + 1 = 0$, find $\sum_{i=1}^{3} (\alpha_i)^2, \sum_{i=1}^{3} (\alpha_i)^3$
- (b) Using mathematical induction to prove the validity of the following:

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n\times (n+1)} = \frac{n}{n+1}$$

Ouestion 5

- (a) Using the binomial theorem, expand $(8-3x)^{-3}$.
- (b) Use De Moiver's theorem to evaluate $(2\sqrt{3}-2i)\overline{3}$.
- (c) Find the sum $\sum_{r=1}^{n} \frac{1}{r(r+1)}$.

Ouestion 6

(a) Find the eigenvalues and the eigenvectors of the matrix $A = \begin{bmatrix} -4 & -5 \\ 2 & 3 \end{bmatrix}$

(b) Solve the linear system x + 2y + 2z = 5, 2x + y - 2z = 0, 2x - y + z = 2.

Dr. Mona Mehanna

Mathematics 2: A. Geometry			
Time: 30 Minuets	Mid-Term Exam	Summer Semester	
Answer the following questions:			
[1]Complete the statement: Parabola is the locus of moving point such that			
[2]Separate the lines $2x^2 + 5xy + 2y^2 + x - y - 1 = 0$ and find the angle between them.			
[3]Write the equation of circle where the points $(1, -1)$, $(3, 3)$ are ends of diameter.			
And determine its radius.			
[4]Write the equation of the parabola of focus F(2, 2), and directrix is $y - 4 = 0$			
[5]Write the circle $x^2 + y^2 + 4x - 6y + 9 = 0$ in parametric form and write its tangent at (-2, 1).			

Quiz: Answer the following questions:

[1] Find the center, vertices, major and minor axes of the ellipse and sketch its curve

$$9x^2 + 16y^2 - 72x + 96y + 144 = 0$$

- [2] Find the center, vertices, foci and sketch the curve $y^2 x^2 + 4x 4y 9 = 0$
- [3] Write the equation of the plane which passes through the points P(1, -2, 2), Q(0, 1, 3) and S(2, 3, 1).